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Abstract

Pedigree and sibship reconstruction are important methods in quantifying relation-

ships and fitness of individuals in natural populations. Current methods employ a

Markov chain-based algorithm to explore plausible possible pedigrees iteratively.

This provides accurate results, but is time-consuming. Here, we develop a method

to infer sibship and paternity relationships from half-sibling arrays of known mater-

nity using hierarchical clustering. Given 50 or more unlinked SNP markers and

empirically derived error rates, the method performs as well as the widely used

package Colony, but is faster by two orders of magnitude. Using simulations, we

show that the method performs well across contrasting mating scenarios, even

when samples are large. We then apply the method to open-pollinated arrays of the

snapdragon Antirrhinum majus and find evidence for a high degree of multiple mat-

ing. Although we focus on diploid SNP data, the method does not depend on mar-

ker type and as such has broad applications in nonmodel systems.
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1 | INTRODUCTION

The genealogical pedigree of a population is a valuable piece of

information for genetic studies because it conveys complete infor-

mation about the relatedness between individuals (Pemberton,

2008). The pedigree of wild populations can be inferred from pat-

terns of shared alleles among individuals based on marker data

(Blouin, 2003; Jones, Small, Paczolt, & Ratterman, 2010). The sim-

plest approach is to infer the parents of individual offspring and

build a pedigree from pairs or triplets of individuals (Marshall, Slate,

Kruuk, & Pemberton, 1998; Meagher, 1986; Meagher & Thompson,

1986). However, the accuracy of pedigree reconstruction can be

increased by including as many sources of relevant information as

possible (Neff, Repka, & Gross, 2001; Wang, 2007). One way to

achieve this is to reconstruct parentage and sibling relationships

simultaneously, because alleles shared among full-siblings allow us to

better identify their common parents that would be possible by con-

sidering each offspring individually (Sieberts, Wijsman, & Thompson,

2002; Wang & Santure, 2009). A major challenge is to find the best

way to partition offspring groups to distinguish full-, half- and nonsi-

blings, because the number of possible configurations is too large to

enumerate, even for modest family sizes.

Given the complexity of this problem, current methods employ

an iterative search via a Markov chain algorithm (e.g., Anderson &

Ng, 2016; Emery, Wilson, Craig, Boyle, & Noble, 2001; Jones et al.,

2007; Thomas & Hill, 2002; Wang, 2004, 2012; Wang & Santure,

2009). For example, Colony repeatedly merges and splits full-sibship

groups and infers the likely genotype of the parents of each group

by simulated annealing (Wang, 2004; Wang & Santure, 2009). This

provides accurate solutions, but can be slow, especially for large data

sets, which limits their applicability to larger data sets or more com-

plex downstream analyses. Wang (2012) altered the method to run

more efficiently with SNP data. This was found to be less accurate

than the full-likelihood method, but provides a substantial increase

in speed and computational burden. In spite of this boost, it still

relies on a Markov chain algorithm and remains time-consuming. As

such, there is still scope to improve the efficiency method to infer

sibling and paternity relationships from genetic markers.
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An alternative way to group individuals into sibship groups is

through hierarchical clustering based on a metric of relatedness.

Hierarchical clustering is a flexible machine-learning technique to

identify plausible ways to group items based on some measure of

how similar (or dissimilar) each pair of items are to one another

(Murtagh & Contreras, 2012). First, a matrix of similarity between all

pairs of items is created, and the closest items are joined sequen-

tially to form distinct groups. This grouping is based on a linkage

function of the distance between groups. Common linkage functions

include the minimum, maximum or mean distance, but other func-

tions are common. Hierarchical clustering does not return a single

optimal configuration of groups, but rather a hierarchy of possible

configurations that can be compared. This provides a means to

quickly generate samples of plausible sibship configurations and to

assess the relative support for each.

In the absence of perfect data, inference from pedigrees will be

more reliable if we also account for uncertainty about parentage. In

the simplest (and probably most commonly applied) approach, cate-

gorical parentage methods identify the most likely pedigree, which

is assumed to be correct in subsequent analyses (e.g., Anderson &

Garza, 2006; Jones & Ardren, 2003; Marshall et al., 1998; Meagher,

1986). This assumption will tend to bias paternity towards highly

homozygous candidates (Devlin, Roeder, & Ellstrand, 1988). Markov

chain algorithms can account for uncertainty in parentage structure

by sampling likely candidates in turn and provide a posterior distri-

bution of possible pedigrees (Anderson & Ng, 2016; Emery et al.,

2001; Hadfield, Richardson, & Burke, 2006; Jones et al., 2007;

Wang & Santure, 2009). An alternative, but overlooked, framework

for parentage inference is fractional parentage assignment, where

all candidate parents are assigned a probability of parentage for

each offspring (Devlin et al., 1988; Nielsen, Mattila, Clapham, &

Palsbøll, 2001; Roeder, Devlin, & Lindsay, 1989). This can be

expressed efficiently in matrix form and allows us to consider the

probability of parentage for all candidates simultaneously. However,

although this is valid for the parentage of individual offspring, it is

more challenging to deal with the parentage of full-sibships in a

fractional framework, because, by definition, no two families can

share both parents.

In this study, we outline methods to jointly infer sibling and

paternal relationships using hierarchical clustering within a frac-

tional framework. To simplify presentation, we focus on inference

of paternity, where the identity of the maternal parent is known

with certainty, although in principle the method is equally valid if

both parents are unknown. We present the Python package frac-

tional analysis of paternity and sibships (FAPS) that allows users to

implement the method and easily draw inferences about family

structure that automatically accounts for uncertainty about pater-

nity and sibling relationships. Using simulations, we demonstrate

that the method is robust to genotype quality, sample size and

mating patterns. We then apply the method to wild seedlings of

the snapdragon Antirrhinum majus where there are a very large

number of candidate males and find evidence for high degree of

polyandry.

2 | METHODS

2.1 | Paternity of individuals

In this study, we consider the case of half-sibling arrays, where a set

of offspring individuals O ¼ fo1; o2; . . .; onog sharing a single mother

m are arranged into one or more full-sibships. Assuming for the

moment that all males in the population have been sampled, each

offspring individual and each full-sibship have a single father in the

set of candidate fathers F ¼ ff1; f2; . . .; fnf g.
Our method relies on individual-paternity matrix G, describing all

possible pairwise relationships between offspring and candidate

males. Each row of G corresponds to a single offspring individual

and each column to a candidate father. Element gij of G is propor-

tional to the likelihood that the jth candidate father in F is the true

father of the ith offspring in O, based on the genotype data for can-

didate, offspring and mother (Thompson & Meagher, 1987;

Appendix 1). Each row of G can be seen as a probability distribution

of possible paternities for a single offspring, and as such, each row

of G must sum to one (Devlin et al., 1988; Nielsen et al., 2001).

Given complete sampling of males and uniform prior belief about the

importance of each male, gij is simply

gij ¼
L oijfj;m
� �

P
f L oijfj;m
� � (1)

where L oijfj;m
� �

is the likelihood of generating the observed off-

spring genotype given the genotypes of m and the jth candidate

male. If sampling is not complete, G should be adjusted accordingly

(Nielsen et al., 2001; Appendix 1).

Methods to calculate L oijfj;m
� �

from marker data are well estab-

lished (Thompson & Meagher, 1987; Meagher & Thompson, 1986;

Marshall et al., 1998; see Jones et al., 2010 for a practical review). It

is important that G should account for errors and missing data in

genotype information, and the most appropriate method for doing

this will depend on the kind of marker being used, such as

microsatellites (Marshall et al., 1998; Wang, 2004) or SNPs (Ander-

son & Garza, 2006). Unless otherwise stated, we have followed

Anderson & Garza (2006) and Nielsen et al. (2001) in the calculation

of likelihoods of paternity for sampled and missing candidates,

respectively (Appendix 1).

2.2 | Clustering into full-sibships

Let Tc be a set of full-sibship groups that partition the n offspring in

half-sibling array O into between one and n subsets of full-siblings.

The kth full-sibship group in Tc is tk � Tc. In a fractional framework,

we aim to identify a set of likely configurations {T1, T2, . . ., Tn} and

account for the relative probability of each.

We use the Unweighted Pair Group Method with Arithmetic

Mean Algorithm (UPGMA) to cluster individuals into full-sibship fam-

ilies (Sokal & Michener, 1958). This is a specific instance of hierarchi-

cal clustering algorithms that use the means distance between

groups as its linkage function. We first calculate distance matrix D,
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whose ihth element is based on the likelihood
P

j gijghj ¼ gi � gh that

the ith and hth offspring are full-siblings, where j indexes each father

in F. This is converted to a distance metric by taking the absolute

value of the log of this value:

Dih ¼ ln
X

j

gijghj

�����

�����: (2)

We then use the UPGMA to build a dendrogram of individuals

based on D. By bisecting this dendrogram at different heights, the n

offspring can be grouped into n unique configurations (one for every

internal node of the dendrogram and one for the tips; see Figure 1).

This approach provides a sample of likely partitions without the need

to explore the sample space of possible partitions iteratively.

2.3 | Likelihood of a partition

To qualify as a full-sibship, all individuals in putative subset tk must

share the same father. For a given partition structure, the likelihood

that the jth father is the true father of every individual in tk is pro-

portional to the product of his probability of paternity for each off-

spring,
Q

i2tk gij, and the likelihood for tk is the sum over likelihoods

for each father,
P

j

Q
i2 tk

gij. If each sibship were independent, the

likelihood of the proposed partition would simply be the product of

the likelihoods for each set of full-siblings:

PrðTcÞ /
Y

k

X

j

Y

i2 tk

gij; (3)

where j indexes candidate fathers, i indexes offspring, and k indexes

full-sibships.

However, to be distinct families, each subset tk may not share its

father with any other subset tm 6¼ k in Tc. This means that Equation 3

is not valid unless the set of compatible fathers for each full-sibship

is unique, with no intersection with that of any other full-sibship.

For example, imagine two proposed full-sibships, a and b, and three

candidate fathers with nonzero probabilities of paternity for each

full-sibship. Then, ca = {a1, a2, a3} and cb = {b1, b2, b3}, where the

subscript indexes the likelihood of paternity for each candidate male

on each full-sibship. Equation 3 is then

X

j

caj
X

j

cbj ¼ ða1 þ a2 þ a3Þðb1 þ b2 þ b3Þ

which expands to a sum of nine terms for all possible pairwise com-

binations:

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

To account for terms describing shared fathers across sibships, it

is necessary to remove those terms with one or more matching sub-

scripts, which in this example are the diagonal elements. For small

cases such as this, it is straightforward to identify these terms and

subtract them from Equation 3, but this quickly becomes computa-

tionally demanding as the number of sibships and candidate fathers

increases. For this reason, we should expect Equation 3 to be

intractable for most real-world cases.

Nevertheless, Pr(Tc|G) can be efficiently estimated using Monte

Carlo simulations. Let Γ denote the matrix of probabilities of pater-

nity for each sibship given partition structure Tc. Like G, Γ has one

column for every candidate father, but rows correspond to proposed

full-sibships rather than individuals. Element ckj of Γ is the probability

that the jth father is the true father of every individual in tk and is

proportional to the product of his probability of paternity for each

offspring in tk:

ckj ¼
Q

i2 tk
gijP

j

Q
i2 tk

gij
(4)

where i indexes offspring. As in Equation 1, the numerator ensures

that the probabilities of paternity for all candidates sum to one.

Because each sibship has exactly one father, we can sample a valid

set of possible fathers for each sibship by traversing a path through

Γ from top to bottom, visiting each column at most once, and each

row exactly once. As before, there will be generally be too many

paths to enumerate. However, because most rows will contain one

or a handful of large values and many small values, only a small num-

ber of the possible paths will explain most of the total probability,

and we can approximate the likelihood of the partition by only con-

sidering these.

For each row in Γ, we draw a sample of likely fathers in propor-

tion to their probability of paternity and bind these vectors into a

matrix with as many rows as in Γ. We remove duplicate columns

and any columns that contain the same candidate twice. The remain-

ing columns represent sets of unique paths through Γ, drawn in pro-

portion to the probability of those paths. The likelihood of each path

through Γ is the product of the probabilities in each column, and the

likelihood for the whole partition is the sum of likelihoods for all

valid paths through Γ.

We note that Equation 4 is not technically correct when geno-

type errors exist in fj, because offspring in tk are no longer indepen-

dent. This will deflate ckj in proportion to the size of tk as the error

F IGURE 1 Partitioning into full-sibships using a dendrogram. A
dendrogram can be constructed from a matrix of relatedness for five
(A–E) individuals in a half-sibling array. By bisecting the dendrogram
at different positions, there are five unique partitions to group
individuals into possible full-sibships, labelled T1–T5. Partition
structures are shown on the right
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is replicated over multiple offspring. Fortunately, with more offspring

in a full-sibship, it is easier to identify the true father (Sieberts et al.,

2002; Wang, 2007), which should more than make up for the effect

of genotype error in the father, assuming genotype error rates are

not very high.

2.4 | Inference of mating patterns

We can use the methods described above to inform questions about

underlying biological processes. For questions about family structure

and size, it is straightforward to account for uncertainty in family

structure by weighting outcomes by the relative support for each

partition. For example, the probability that any pair of individuals are

full-siblings is the sum of the probabilities of each partition for which

the individuals are full-siblings. The probability that there are x full-

sibships in a half-sibling array is the sum of each Pr(Tc) for which

|Tc| = x. Similarly, the posterior distribution of full-sibship sizes is the

sum of the distributions for each Tc weighted by Pr(Tc).

If the ith offspring is assigned to full-sibship tk in partition struc-

ture Tc, the probability that the jth candidate is the father of oi is ckj,

conditioned on Tc. The marginal probability that the jth candidate is

the father of the ith offspring is then the product of each ckj in each

partition structure:

Prðoijfj;m; i 2 tkÞ ¼
Y

c

ckjjTcPrðTcÞ: (5)

We can then estimate the distribution of fertilities among candi-

dates by apportioning paternity of the whole half-sibship array to

each candidate. The fertility of the jth father on the mother is the

proportion of the no total offspring sired by fj:

1
no

X

i

Prðoijfj;m; i 2 tkÞ: (6)

This is similar to Roeder et al.’s (1989) equation for paternal fer-

tility and would be appropriate for investigating postmating fertility

processes such as pollen competition.

However, this equation is only valid when there is little sibship

structure in the sample because the assumption that offspring are

independent is violated. For most biological questions, it is more

appropriate compare the fecundities of candidate fathers on the

mothers by identifying independent mating events. To do this, we

employ a Monte Carlo sampling scheme similar to that described

above, which allows us to account for the relative probabilities of

each partition structure, while avoiding the possibility of drawing the

same candidate for multiple full-sibships. For partition Tc, we first

draw N sets of candidate fathers for each full-sibship in proportion

to their probabilities of paternity, where N is very large (≥1,000). We

then remove sets for which the same candidate is represented more

than once. These sets are resampled Pr(Tc)N times to weight samples

by the probability of the partition. This procedure is repeated for

each partition. Because
P

c PrðTcÞ ¼ 1, this leaves a total of N sets in

superset X of likely candidate fathers. The fecundity of the jth candi-

date on the mother is then his frequency in all sets in X.

2.5 | FAPS package

Our method is implemented in the Python package FAPS. The pack-

aged is based on NumPy, with additional tools from the fastcluster

and pandas packages (McKinney, 2010; M€ullner, 2013; van der Walt,

Colbert, & Varoquaux, 2011). The package includes functions for cal-

culating G with a focus on SNP markers (Appendix 1), clustering

individuals into sibships for multiple half-sibling arrays. FAPS also

allows for inference of family structure and mating patterns with

summary outputs that automatically account for uncertainty in

genealogy. Extensive simulation tools are provided to allow power

analyses for hypothetical data sets, as well as facilities for inspecting

data prior to analysis. FAPS can handle multiple half-sibling arrays

and makes no requirement that a candidate father sires offspring

with multiple mothers. The package and accompanying tutorial are

available from www.github.com/ellisztamas/faps.

2.6 | Simulations

We used FAPS’ power analysis tools to investigate how well FAPS

was able to infer sibship and mating patterns as the quality of geno-

type information, analysis parameters and underlying family structure

varied. In all simulations below, we ran 300 replicates for each

parameter set.

2.6.1 | Accuracy of relationship inference

We used five metrics to assess sibship and paternity assignment:

1. ppartition: the probability that the true partition structure is

included in the sample of possible partitions;

2. pfull: the mean posterior probability that a pair of true full-siblings

are inferred to be full-siblings;

3. phalf: the mean posterior probability that a pair of true half-sib-

lings are inferred to be half-siblings;

4. psire: the mean posterior probability that an individual’s true sire

is inferred to be the true sire;

5. pabsent: the mean posterior probability that the true sire is

inferred to be missing from the sample of candidates;

6. The distribution of inferred family sizes, or else the distribution

of number of families.

With the exception of ppartition, probabilities are calculated inte-

grating over possible partition structures.

2.6.2 | Family structure scenarios

In a first set of simulations, we investigated inference of family

structure for half-sibling arrays of 20 offspring under four contrast-

ing scenarios: (i) even sibship sizes (four full-sibships of five off-

spring); (ii) a single family (one full-sibship of 20 offspring); (iii) all

half-siblings (20 full-sibships of one offspring); (iv) reproductive skew

(one full-sibship of 10 individuals plus 10 families of one offspring).

4 | ELLIS ET AL.

http://www.github.com/ellisztamas/faps


For each scenario below, we simulated genotypes for a single

mother, as well as 100, 250, 500, 1,000 or 2,000 candidate males

based on between 30 and 100 unlinked SNP loci. SNP minor allele

frequencies were drawn from a uniform distribution between 0.3

and 0.5. We simulated offspring genotypes based on parental geno-

types and Mendelian inheritance. We then added point mutations to

adult and offspring genotypes at random with per-locus probabilities

of l = 0.0015, 0.005, 0.01 or 0.015 to simulate errors in genotyping.

2.6.3 | Full-sibship size

To test the effect of overall offspring sample size, we repeated simu-

lations for the even-sibship-size mating scenario, but using full-sib-

ship sizes of 2, 10, 25, 50 or 100 individuals. As these simulations

were computationally intensive, we only used 250 candidate males,

50 loci and l = 0.0015.

2.6.4 | Number of Monte Carlo draws

To investigate the sensitivity of sibship inference to the number

of Monte Carlo draws used to estimate the likelihood of a parti-

tion structure, we repeated simulations of the four family struc-

ture scenarios described above using 101, 102, 103 and 104 draws.

We performed simulations assuming l = 0.0015 and 50 loci. For

each simulated data set, we assessed how much of the probability

space of possible sibship and paternity relationships had been

explored by summing the likelihoods for each partition structure

inferred from hierarchical clustering. We also inferred the effect

of changing the number of draws on the accuracy of sibship infer-

ence.

2.6.5 | Comparison with Colony

We compared the performance of FAPS with the serial command-

line version of Colony 2.0.6.3 for Linux (Wang & Santure, 2009).

We used FAPS to simulate half-sibling arrays containing four full-

sibships of five individuals and 250 candidate males, using

between 10 and 80 loci and l = 0.0015. We then used FAPS and

Colony to infer family structures of each half-sibling array assum-

ing no self-fertilization.

Colony allows for three analysis methods: (i) “full likelihood” (FL)

that incorporates information on both sibship and parental relation-

ships jointly (Wang, 2004); (ii) “pairwise likelihood” (PLS) that recon-

structs relationships for pairs of individuals only; and (iii) a hybrid

method which is designed to work efficiently with SNP data (FPLS;

Wang & Santure, 2009). We analysed each simulated data set with

all three methods, using no informative prior on sibship size. We also

set allele frequencies as known, run length to medium and likelihood

accuracy to “high”. For all analyses, we included information about

the identity of the mother of each half-sibling array. We note that

inference based on pairwise relationships only is expected to

perform more poorly than FL and FPLS, but we include it here for

reference.

2.7 | Antirrhinum majus data

We applied the method to a sample of open-pollinated seeds col-

lected in a hybrid-zone population of the snapdragon A. majus poly-

morphic for magenta and yellow pigmentation (Whibley et al., 2006).

Antirrhinum majus has a closed mouth-like floral structure and is pol-

linated primarily by large bees which are strong enough to pull the

flower open (Vargas, Ornosa, Ortiz-Sanchez, & Arroyo, 2010). Sam-

pling of the progeny, mothers and candidate fathers and details of

the genotyping procedure are described in detail by Ellis (2016).

Briefly, we collected seed capsules from 96 mothers in July 2012,

each containing many hundreds of seeds. We grew and collected tis-

sue from a total of 1,468 seedlings from 57 of these families, with

between 3 and 35 seedlings per family. We also sampled 2,128 adult

plants, including maternal plants. DNA was extracted from leaf mate-

rial from seedlings, maternal and paternal parents and subsequently

genotyped at 120 SNPs by LGC Genomics. This SNP panel repre-

sents the 42 SNPs described by Ellis (2016) plus a further 27 SNPs

designed using the same procedure. Parentage SNPs were chosen

that showed as little spatial variation as possible, had minor allele

frequencies close to 0.5 and that were at least 2 cM apart.

To estimate per-locus error rates associated with KASPR

sequencing we repeated DNA extraction and genotyping for two

independent tissue samples from each of 194 random adult plants.

This generated 23,720 per-locus diploid genotypes, of which 0.13%

differed between samples from the same individual. Based on this,

we used genotyping error rates of 0.0013 for analyses with FAPS.

Unfortunately, the silica gel used to dry the offspring tissue did

not have sufficient desiccating power, and the quality offspring DNA

was highly variable. We have found that individuals with many loci

that failed to amplify also had high genotype error rates at the

remaining loci (David Luke Field, unpublished data). Rather than risk

biasing statistical and biological conclusions through such errors, we

applied a stringent data cleaning protocol prior to sibship analysis.

We excluded 54 SNPs with more than 5% missing data and four

with heterozygosity <0.2 or >0.75. We also excluded 736 offspring

and 66 adult individuals with greater than 5% missing genotype data.

After these data cleaning steps, the remaining 64 SNPs had on aver-

age 1.7% missing data in the offspring and 0.8% in the adults, and

heterozygosity between 0.20 and 0.55.

We analysed these data in two stages. We first examined the lar-

gest family in the data set (20 offspring from mother L1872) to

assess three factors which might indicate errors in genealogical infer-

ence. If assignment is accurate, we expect that the most probable

candidates should be no more related to one another, nor show an

increase in the proportion of missing genotypes than would be

expected by a random draw from the population. Similarly, we would

expect that the most probable pollen donors are found in close to

the maternal plant, but that less likely candidates are drawn from

the spatial distribution of candidates at random. We used FAPS to

cluster family L1872 and identify most probable fathers for each off-

spring, accounting for uncertainty in sibship structure. We then com-

pared distributions of pairwise relatedness, proportion of missing
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data and geographic location for the probable candidate fathers to

those for the base population.

In a second analysis, we used a broader sample of families to infer

the number of pollen donors that contribute to a seed capsule. To

allow for direct comparison between families, we used only those 18

families with 17 or more offspring. We sampled 17 offspring at random

from each family, leaving a total of 306 offspring. For each family, we

estimated the posterior distributions of the number of contributing

sires and the size of each full-sibship. We calculated 95% credible inter-

vals based on the 2.5% and 9.7% percentiles of these distributions.

3 | RESULTS

3.1 | Simulations

3.1.1 | Method robustness

For the even-sibship-size mating scenario, all metrics of performance

increased with the number of genotyped loci and decreased with

increasing genotyping error rates and the number of candidate

fathers in the sample (Figures 2 and 3). Using l = 0.0015 and 2,000

candidate males, 40 loci are sufficient to recover the true partition

with >99% reliability, even for the largest samples of candidate

males (Figure 2a,b). In 99.9% of cases where the true partition was

not recovered, this was because FAPS identified an alternative parti-

tion structure with a higher likelihood of having generated the data

than the true partition.

We found that 50 loci sufficed to identify full-sibling relation-

ships and true sires with >95% posterior probability (Figure 2c).

Under all simulation parameter sets, the distribution of family sizes

remains centred on the true value, followed by a peak at family size

of one, then one minus the true family size (Figure 3). Thus, when

true full-siblings were assigned as half-siblings, this was in most

cases due to a single individual being assigned to a singleton family.

Fractional analysis of paternity and sibships correctly inferred

>99.9% of true half-sibling relationship across all parameter sets,

even for cases with the fewest loci, highest errors and many candi-

date fathers. Partition structures that join two true full-sibships or

otherwise overestimated family size had posterior probabilities very

close to zero (Figure 3).

Simulation results were very similar in three other mating scenar-

ios simulated (Figures S1–S4). One notable departure from the pat-

terns described above is that for the single-family and all-half-

siblings scenarios FAPS recovered the true partition in all simulated

data sets (Figures S1 and S2). These scenarios represent the tip and

base of the dendrogram (Figure 1). Furthermore, the probability

pabsent that the true was not sampled was less than .001 under all

mating scenarios.

3.1.2 | Reduced variance in larger families

In simulations investigating the effect of sibship size, true full-sibling

relationships were recovered with >.98 posterior probability,

regardless of family size (Figure 4). However, the variance in accuracy

between samples decreased as family size increases, reflecting the

increased information about sibling relationships with larger families.

3.1.3 | Little dependence on Monte Carlo draws

In all simulations, the proportion of probability space explored by

the Monte Carlo sampling algorithm decreased as the number of

candidate fathers increased (Figure 5, left-hand side). Increasing the

number of Monte Carlo draws tended to increase the proportion of

space explored. This effect was stronger when there were more can-

didate fathers in the sample. The increase was especially strong in

the “many-full-sibships” and “reproductive-skew” scenarios, where

there were many singleton offspring who could be compatible with

multiple candidates (Figure 5c,g).

The accuracy of full-sibship inference also decreased with

increased number of candidate fathers. However, there was no

change in either pfull or phalf with increasing numbers of Monte Carlo

draws.

3.1.4 | Comparison with Colony

All three analysis methods in Colony showed very high accuracy of

full-sibling inference, even where the number of loci was very small

(Figure 6a). FAPS showed substantially lower pfull than any Colony

method for data sets with 30 or fewer loci, but was as accurate as

Colony for data sets with 40 or more loci.

Fractional analysis of paternity and sibships, FL and FPLS also

showed near total accuracy in inferring half-sibling relationships

regardless of the number of loci, but the pairwise method showed

very low phalf (Figure 6a). Further examination revealed that this was

because the PLS method tended to group multiple true full-sibships

into erroneous larger full-sibships.

The FL, PLS and FPLS completed analyses for all 300 data sets

in 671.40, 322.43 and 465.47 min, respectively. FAPS required

2.05 min to create G matrices and perform hierarchical clustering for

the same data sets on the same machine.

3.2 | Extensive polyandry in A. majus

For all of the 20 offspring in family L1872, there was a single candi-

date with a posterior probability of paternity >.96. These candidates

were from a sample of seven independent most probable pollen

donors. Given strong support for these candidates and for ease of

presentation, we focus discussion on these individuals.

Most probable candidates were located between 32 and 79 m

from the maternal plant (mean = 48 m). In contrast, second-most

probable candidates were located between 102 and 1,367 m from

the maternal plant (mean = 833 m; Figure S4). We found no evi-

dence that most probable candidates were more related to one

another than would be expected from a random draw from the pool

of candidates (Figure S5), nor that most likely candidates had an

unusually high proportion of missing SNP data (Figure S6).
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(a) (b)

(c) (d)

(e) (f)

F IGURE 2 Fractional analysis of paternity and sibships performance for four families of five offspring. Subfigures show the probability of
recovering the true partition (a, b), accuracy of full-sibling relationship reconstruction (c, d) and posterior probability of the each true sire on its
offspring (e, f) as the number of typed loci (a, c, e), genotype error rate (b, d, e) and number of candidate fathers (see legend) vary

(a) (b) (c)

F IGURE 3 Distribution of inferred family sizes under the even-sibship-size mating scenario as number of loci (a), genotype error rate (b)
and the number of candidate fathers (c) vary. For clarity, only an illustrative subset of the parameter sets are shown. In plots in which a single
variable does not vary, plots show the cases for 50 loci, l = 0.0015 and 250 candidates. The true family size is five in all cases
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We used FAPS to cluster 18 samples from wild-pollinated mater-

nal families of A. majus into full-sibships. For all 306 offspring, the

posterior probability that the true sire was unsampled was less than

.001. The posterior distribution of family number implies that a sam-

ple of 17 offspring comprised between four and 15 full-sibling fami-

lies of up to six offspring (Figure 7).

4 | DISCUSSION

In this study, we present a method for inferring sibship and paternity

relationships from half-sibling arrays. We use hierarchical clustering

to identify plausible ways to partition offspring into full-sibships and

assess the support for different partition structures using Monte

Carlo simulation. Given modest number of loci and realistic error

rates, the method is as accurate as the algorithms implemented in

Colony, but is faster by two orders of magnitude. The Python pack-

age FAPS also includes tools to extract biologically relevant informa-

tion regarding sibship and paternity structure that automatically

accounts for uncertain about the exact pedigree. As such FAPS rep-

resents an accurate and efficient tool that allows for robust and effi-

cient biological inference from genealogies.

Using realistic sample sizes, a modest number of SNP loci error

rates, FAPS performs well under a variety of contrasting sibship

structures. This is true even when samples of offspring and candidate

fathers are large, which previous work has found can be problematic

for sibship assignment (Almudevar & Anderson, 2012). In particular,

FAPS never falsely assigned two full-siblings to be half-siblings. When

there were errors in sibship assignment, single offspring tended to

splinter into families on their own. Most such errors were due to indi-

viduals being assigned to a family on their own, rather with other

individuals in a larger family (Figure 3). These errors typically

occurred when an unrelated candidate male had a higher likelihood

of paternity than did the true sire due to stochasticity in Mendelian

sampling. This phenomenon has been previously noted for both

paternity (Thompson, 1976) and sibship (Butler, Field, Herbinger, &

Smith, 2004) assignment problems. In the overwhelming majority of

cases where FAPS erred, this was due to the existence of an alterna-

tive partition with higher likelihood than the true partition, rather

than a failure of the clustering algorithm to detect the true partition.

As such, the incorrect partitions identified by FAPS is in fact more

consistent with the data than the true genealogy.

We found Monte Carlo simulation to be an efficient approach to

estimating the likelihood of a partition, while excluding the possibility

that multiple full-sibships share a father. A drawback of this scheme

is that there is no way to know how much of the probability space

has been sampled for a given number of Monte Carlo draws.

Increasing the number of Monte Carlo draws increased the propor-

tion of probability space that could be explored, especially in sam-

ples with many candidate males, or smaller full-sibship sizes

(Figure 5). This is not surprising, given that, in these scenarios, the

space of possible configurations is much larger, and there is less

information among full-siblings to rule out unrelated candidate

fathers. However, the number of draws had almost no effect on the

accuracy of sibship inference (Figure 5, right-hand side). This indi-

cates that the most likely configurations can be sampled with a small

number of draws and that the accuracy of FAPS does not depend

on the parameter choice for the number of Monte Carlo draws.

Our hierarchical clustering algorithm relies on a matrix of proba-

bilities that pairs of offspring are full-siblings. As well as having low

statistical power (Wang, 2007), pairwise sibship measures can be

problematic in that any pair of three individuals can be compatible

as full-siblings sired by separate fathers, but incompatible as a single

family sired by a single father. Several lines of evidence indicate that

this issue is not a significant concern for this method. Firstly, the

Monte Carlo sampling scheme explicitly evaluates the likelihood that

the whole sibship was sired by individual candidate fathers. As noted

above, simulations demonstrate that this returns accurate sibship

and paternity configurations (Figures 2–4 and S1–S4). Finally, FAPS

dramatically outperforms the pairwise-likelihood method imple-

mented in Colony (Figure 6). These observations indicate that any

inherent weakness in using the heuristic pairwise metric has negligi-

ble negative impact on the accuracy of this method.

Our analysis of open-pollinated A. majus seed capsules found

evidence for a large number of small full-sibling families in a half-sib-

ling array. As a single seed capsule can contain hundreds of seeds,

our samples of 17 offspring per array represent only a tiny fraction

of the total seeds in the array. It is therefore likely that these full-

sibships are substantially larger than implied in Figure 7. Neverthe-

less, this demonstrates that a single seed capsule contains offspring

from a large number of pollen donors, either through many indepen-

dent pollinator visits or through fewer visits by pollinators delivering

mixed pollen loads. As pollinator behaviour is a crucial mediator of

gene flow among flowering plants, we are using these paternity data

in ongoing work to investigate the interaction between flower colour

and pollinator behaviour in the maintenance of this hybrid zone.

Closer examination of a single large family found that the 20 off-

spring in family L1872 could be assigned to seven pollen donors

with high posterior probability. These donors were no more related

F IGURE 4 Viola plots showing the accuracy of pairwise full-
sibling-relationship reconstruction as full-sibship size increases
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

F IGURE 5 Effect of the number of Monte Carlo draws on the proportion of probability space sampled (a, c, e, g) and accuracy of sibship
reconstruction (b, d, f, g). Legend indicates number of candidate fathers. Subplots show scenarios for even sibship sizes (a–b), a single family
(c–d) all half-siblings (e–f) reproductive skew (g–h)
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to one another nor have substantially poorer quality genotype data

than would be expected by chance. Furthermore, they were within

close proximity to the maternal plant, as one would expect if pol-

len is transported by foraging bees (Ashley, 2010). In contrast, the

second-most probable set of candidate fathers was located across

the population, as we would expect for unrelated individuals

drawn at random from the pool of candidates. These observations

indicate that the most probable fathers are the true sires and that

results from FAPS for the broader survey of 18 families are

robust.

Inference of the relationships between individuals in natural

populations is an important technique for understanding patterns

of gene dispersal and selection in the wild (Ashley, 2010; Pember-

ton, 2008). The method presented here represent a useful tool to

infer mating patterns from half-sibling arrays that accounts for

uncertainty about exact relationships. Because the method requires

only a likelihood of paternity for mother–offspring–father triplets, it

does not depend on marker type or genetic system, provided this

likelihood can be calculated. We have focused on the case where

one mother is known and individuals are genotyped using biallelic

SNPs. Nevertheless, it could in principle be easily extended to the

assignment of parent pairs simply by substituting an appropriate

likelihood function to calculate G (Meagher & Thompson, 1986),

although the greater number of possible parents would require

more markers and more intense computation. Moreover, it is

equally applicable to any marker type (Anderson & Garza, 2006;

Jones & Ardren, 2003) or organisms with polyploid inheritance

(Wang & Scribner, 2014), provided that it is possible to estimate

likelihoods of paternity.
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APPENDIX 1

Likelihood of paternity

The likelihood that a male is the true father of an offspring is given by

the probability kl of observing the offspring genotype given the mater-

nal and paternal alleles at locus l, multiplied across each locus, such

that Lðoijfj;mÞ ¼ Q
l kl (Devlin et al., 1988; Meagher, 1986; Meagher &

Thompson, 1986). This formulation assumes that all loci are unlinked,

which may not hold for SNP data. Anderson and Garza (2006) found

that linkage causes the SNP panel to behave as if there were fewer

loci than had been typed, but that this effect was fairly minor.

One source of genotyping error are point mutations, where a

haploid genotype is observed to be allele A when it is actually allele

B. We follow Anderson and Garza (2006) in summing over all possi-

ble maternal, paternal and offspring alleles, weighted by the probabil-

ity that each is the true genotype given error rate ε1. This rate can

be estimated through repeat genotyping of the same individuals.

A further source of error occurs where one or more loci fail to

amplify for an individual, leaving missing data for that locus. Failing

to account for these missing data causes candidate males with many

failed loci to have high likelihoods of paternity, because the calcula-

tion of Prðoijfj;mÞ multiplies over fewer loci. We account for these

errors by correcting for the v loci which amplified successfully for

the maternal, paternal and offspring genotypes, giving

Prðoijfj;mÞ ¼ Q
l k

1=v
l , or equivalently log gik / 1=v

P
l logkl. This drop-

out rate, ε2, can be observed directly from the data.

Incomplete sampling of males

In real data sets, it is unlikely that every male can be sampled, and

therefore, some offspring may have paternal genotypes not found in

F. Following Nielsen et al. (2001), we modify G to account for the

probability hi that the father of the ith offspring has been sampled

and probability Prðoijm; aÞ that an individual is the offspring of an

unsampled father with alleles drawn at random from the vector of

local allele frequencies a. Thus we have

gij ¼ hiPrðoijfj;mÞP
j hiPrðoijfj;mÞ þ 1� hið ÞPrðoijaÞ :

To ensure rows in G sum to one, we also append each row in G

with

gia ¼ ð1� hiÞPrðoijaÞP
k hiPrðoijfkÞ þ 1� hið ÞPrðoijaÞ :

Individuals with large terms for gia may either be full-siblings

sharing a single unsampled father or else half-siblings with different

unsampled fathers. It is difficult to distinguish these hypotheses in

the absence of further information. When estimating PrðTcjGÞ, we

therefore keep the requirement that no two sibships can share a

father in F, but do allow two sibships to share an unsampled father.

It is assumed that the sample of candidate males is sufficiently

large to give a representative estimate of a or that estimates are avail-

able from other sources. If it is expected that only a small proportion

of the candidate males has been sampled, it would be appropriate to

consider inference of sibship relationships without parental informa-

tion or accurate allele frequency data, such as Colony (Wang, 2004).

By including gia in G, it is straightforward to account for unsam-

pled fathers in biological inference. A missing father is treated like

any other father, and the probability of a missing father is automati-

cally incorporated into G. This will not bias inference about the rela-

tionship between fecundity and phenotypes provided at the

phenotype of the missing fathers are random.
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